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Consultation draft – not for official use 

The Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development 
(IESC) is seeking comment on the draft Explanatory Note, Uncertainty Analysis in Groundwater 
Modelling.  
 
The IESC note the draft nature of the Explanatory Note and welcome feedback on its content, usability 
and applicability. In particular, views are sought on: 

 the technical content within the draft Explanatory Note. Are there any areas that are missing or 

not captured adequately? 

 the relevance to your specific area of work and any views on its uptake and adoption. 

 potential options to increase uptake and adoption.  

 

A glossary is being developed and the Explanatory Note will be updated once this is finalised. Feedback 

received during the consultation process will be used to further target and refine sections to ensure a 

robust and relevant document.  

 

This paper provides a background on the IESC’s role. Context for the draft Explanatory Note is also 

provided to consider when providing feedback.  

The IESC and the Information Guidelines  

The IESC is a statutory body under the Environment Protection and Biodiversity Conservation Act 1999 

(EPBC Act). One of the IESC’s key legislative functions is to provide scientific advice to the Commonwealth 

Environment Minister and relevant state ministers in relation to coal seam gas (CSG) and large coal mining 

development proposals that are likely to have a significant impact on water resources.  

The Independent Expert Scientific Committee’s Information Guidelines for proponents preparing coal seam 

gas and large coal mining development proposals (Information Guidelines) outline the information that 

project proponents should provide to enable the IESC to provide robust scientific advice to government 

regulators on the potential water-related impacts of CSG and large coal mining development proposals. 

The Explanatory Note supports the Information Guidelines by providing information and guidance on 

undertaking uncertainty analysis of groundwater modelling.  

The Explanatory Note, Uncertainty Analysis in Groundwater Modelling 

The complexities and inherent uncertainties associated with conceptualising and estimating hydraulic 

characteristics (i.e. parameterisation) of groundwater systems indicates that predictive uncertainty 

analysis should be an important part of the groundwater modelling process. The general approach that is 

currently observed in environmental impact assessments is the development of a single numerical 

groundwater model without any uncertainty analysis. When considered in a risk management context, this 

approach is not sufficient to predict the range of potential impacts and their likelihood. A quantitative 

uncertainty analysis delivers the range of model prediction scenarios, each plausible in that they are 

consistent with all available information and data. Uncertainty analysis also provides insight into what are 

the main sources of uncertainty and how much the uncertainty in model outcomes is reduced by data.  
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The draft Explanatory Note is intended to complement the Australian Groundwater Modelling Guidelines 

(AGMG). It is acknowledged that there are a range of externalities (e.g. limited formal training/guidance, 

timing, cost, project staging etc.) that need to be considered to increase adoption and uptake of 

uncertainty analysis for project scale environment impact assessments. A robust uncertainty analysis is 

important for regulatory decision-making, as it will inform and ensure management options and 

approaches are commensurate with the level of risk and its likelihood for any particular impact. Feedback 

on the draft Explanatory Note will help develop a robust, relevant and usable document.
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EXECUTIVE SUMMARY 
 

Context 

The complexities and inherent uncertainties associated with conceptualising and estimating 

hydraulic characteristics (i.e. parameterisation) of groundwater systems indicates that predictive 

uncertainty analysis should be an important part of the groundwater modelling process. Currently 

observed in environmental impact assessments is the development of a single numerical 

groundwater model without any uncertainty analysis. When considered in a risk management 

context, this approach is not sufficient to predict the range of potential impacts and their likelihood. 

A quantitative uncertainty analysis delivers the range of model prediction scenarios, each plausible 

in that they are consistent with all available information and data. Uncertainty analysis also 

provides insight into what are the main sources of uncertainty and how much the uncertainty in 

model outcomes is reduced by data.  

The Explanatory Note is intended to support the IESC Information Guidelines and complement the 
Australian Groundwater Modelling Guidelines (AGMG). A robust uncertainty analysis is important 
for regulatory decision-making, as it will inform and ensure management options and approaches 
are commensurate with the level of risk and its likelihood for any particular impact.  

Uncertainty is often lumped into two main types: deficiency in our knowledge of the natural world 
(including effects of error in measurements); and failure to capture the complexity of the natural 
world (or what we know about it) in a modelling tool.  

The IESC Information Guidelines set the context for this Explanatory Note on groundwater model 
uncertainty analysis. The Information Guidelines require that: 

 modelling results should be presented to show a range of possible outcomes based on 
uncertainty analysis; 

 assessment of potential impacts should outline the quality of, and risks and uncertainty 
inherent in, the background data and the modelling, particularly with respect to predicted 
potential scenarios; 

 the assessment should acknowledge uncertainties in the modelling, identify the sources of 
errors (e.g. conceptual model and parameter uncertainty) and quantify the level of uncertainty. 

This Explanatory Note provides detailed information on undertaking uncertainty analyses, and 
establishes some key guiding principles: 

 the model must be designed to be specifically fit for the purpose to provide information about 
uncertainty in a way that allows decision makers to understand the effects of uncertainty on 
project objectives, and the effects of potential bias; 

 uncertainty must be considered/addressed at problem definition and at each subsequent 
stage of the workflow; 

 collaborative engagement with regulatory agencies is required at all stages, to discuss and 
agree the methodologies and understand the implications of the results. 

Risk Management Framework  

A well-executed groundwater model uncertainty analysis provides estimates of the probabilities of 
the predicted water-related impacts of proposed developments for input to environmental 
assessments and management planning, embedded within a risk management framework (i.e. 
probability and consequence are quantified). It also provides information on the effect of 
uncertainties in the data, knowledge or modelling on the predicted outcomes, such that decision-
making can have a robust foundation. 
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A quantitative uncertainty analysis delivers the range of model prediction scenarios or outcomes 
that are each equally plausible in that they are consistent with all available information and 
observations/data. Uncertainty analysis also reveals the main sources of uncertainty and how 
much the uncertainty in model outcomes is reduced by the observations/data. It is important to 
emphasise that uncertainty analysis pertains to the model outcomes (scenarios), not the model 
itself. It is entirely possible that a model (with its particular set of parameters) that has a small 
uncertainty in reproducing historical groundwater level observations can produce drawdown 
predictions with a much greater uncertainty (than the history match).  

An uncertainty analysis must therefore be carried out within a risk management context that 
identifies which model outcomes are relevant for decision making for that project. In the ISO 
31000:2009 risk management standard, risk is defined as the effect of uncertainty on project 
objectives, and it is characterised as a function of the probability and consequence of an 
outcome. Hence predictions of the consequences (impacts) of development or management 
options should quantify or characterise the related uncertainties. This means that groundwater 
models should be designed to systematically investigate the causal pathways for potential impacts 
on water resources and water-dependent assets arising from a proposed development.  

Early and Ongoing Engagement and Consultation to select the best methods 

As there are many complex issues involved in uncertainty analysis, early (and ongoing) dialogue 
between the proponent and regulator (and their technical experts) is needed about what model 
outcomes are needed (given the risk context), what approaches to groundwater modelling and 
uncertainty analysis are appropriate and to what extent the analysis needs to be conservative.  

Within the resources available for the impact assessment, there is a trade-off between the 
complexity of the uncertainty analysis and the complexity of the groundwater model. More 
complex groundwater models tend to take longer to run, while more comprehensive uncertainty 
analysis approaches require more model runs. This requires a balance between model simplicity 
and complexity for an uncertainty evaluation such that it is commensurate with the 
risk/consequence profile of the project. In selecting the appropriate level of complexity, the 
Explanatory Note emphasises the need to fully and transparently document the choices made and 
the consultations and risk assessments involved.  

As well as constraints on the available data and resources (time and budget), and the technical 
challenges, a major factor in justifying choices in groundwater modelling and uncertainty analysis 
is the effect on the model outcomes. From a precautionary viewpoint, it is often justified to make 
conservative choices, i.e. choices that will overestimate hydrological changes rather than 
underestimate (e.g. an uncertainty analysis with conservative assumptions may require less 
complex modelling approaches and yet may provide acceptable outcomes). Whether model 
choices are conservative and to what extent again needs to be discussed between the proponent 
and regulator. 

Uncertainty Methods 

This Explanatory Note outlines three general approaches to uncertainty analysis (listed here in 
increasing order of complexity and thus resources required); (1) scenario analysis with subjective 
probability, (2) deterministic modelling with linear probability quantification and (3) stochastic 
modelling with Bayesian probability. The Explanatory Note outlines how the technical and practical 
challenges are surmountable, even when considering the resource limitations of practical impact 
assessment studies. 

The first method can be described as a sensitivity style of uncertainty analysis. It consists of 
running the model a limited number of times for different scenarios of parameter or input values 
(usually previously identified from sensitivity testing). The main advantage of this kind of ‘what-if’ 
analysis is that it is straight forward to implement and communicate and that it is not 
computationally demanding. The main drawback is that the selection of scenarios is subjective 
and the likelihood of a scenario therefore is also subjective. 
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The second approach, deterministic modelling with linear probability quantification, assumes the 
model behaves linearly for parameter values in the vicinity of the adopted history-match 
(conditional) calibration, and that the uncertainty in parameters and observations can be 
approximated by normal or lognormal distributions. The main advantage is that this method 
provides an objective and repeatable estimate of the likelihood for the model outcomes through 
confidence intervals. The drawbacks are that it is computationally more demanding, the 
interpretation and communication is more complex than a scenario analysis and, most importantly, 
the assumptions on normality and linearity need to be justified. 

In the third approach, stochastic modelling with Bayesian probability, the model is evaluated 
repeatedly to create an ensemble of model outcomes, with each individual model performance 
fitting the history-match observations within specified criteria. Based on such an ensemble of 
model outcomes, the likelihood of any particular model outcome can be computed. The main 
advantage is that it does not require assumptions on linear model behaviour or normally 
distributed parameters. The drawbacks are that it is even more computationally demanding than 
the second approach and, while the assumptions on normality and linearity are relaxed, there are 
other assumptions involved in the analysis, such as the method for generating the ensemble of 
model runs or the way the fit with observations is calculated.  

While the technical approaches are very different, the common principles are that uncertainty 
analysis needs to be an integral part of the modelling workflow from the start, focussed on well-
defined model outcomes, and that early and ongoing engagement, consultation and dialogue is 
required between the proponent and regulator (and their technical experts).  

Each method requires all information to be presented by the proponent in their assessment, with a 
formal discussion on which parameters are included in the analysis and why. A formal examination 
of the uncertainty in these parameters and of the uncertainty in the observations/data, and a 
formal description of what is an acceptable level of model-to-observation-misfit (to objectively 
evaluate model performance) should also be undertaken. In the context of groundwater modelling, 
a crucial practical requirement is a stable groundwater model that converges over a wide range of 
parameter values, which requires careful design, testing and review of the groundwater model(s). 

The Explanatory Note provides a fatal-flaws checklist for reviewers to assess an uncertainty 
analysis (most questions need specialist skills). The main foci are: the clear definition of the model 
outcomes required; the justification of the methods and assumptions applied; the open, 
transparent and logical documentation of methods and results that is amenable to scrutiny; and 
the level of consultation and communication between proponent and regulator. 
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1 EXPLANATORY NOTE CONTEXT 

The Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining 
Development (IESC) is a statutory body under the Environment Protection and Biodiversity 
Conservation Act 1999 (Cth) (EPBC Act). Further information is available on the IESC website. 

The IESC Information Guidelines (Cth, 2018) set the context for this Explanatory Note. They 
outline the information needed from proponents of coal seam gas (CSG) and large coal mining 
proposals to enable the IESC to provide advice to decision makers. This includes the fundamental 
requirements for groundwater modelling approaches for water-related cumulative impact and risk 
assessments.  

The key guiding principles of the Information Guidelines include:  

 the importance of identifying water-dependent environmental assets and potential impact 
causal pathways;  

 impact assessments based on conceptual, analytical and numerical modelling and related 
water and salt balances and other data needs; and,  

 adaptive management based on monitoring and evaluation of mitigation measure 
performance.  

 

The Information Guidelines require that: 

 modelling results should be presented to show a range of possible outcomes based on 
uncertainty analysis; 

 assessment of potential impacts should outline the quality of, and risks and uncertainty 
inherent in, the background data and the modelling, particularly with respect to predicted 
potential scenarios; 

 the assessment should acknowledge uncertainties in the modelling, identify the sources of 
errors (e.g. conceptual model and parameter uncertainty) and quantify the level of uncertainty. 

 

This Explanatory Note supports the Information Guidelines by providing specific and detailed 
guidance on uncertainty analysis for groundwater modelling methods of impact and risk 
assessments for CSG and large coal mine developments. Guidance is also provided on the 
engagement process with agencies, and communication on uncertainty issues. 

This Explanatory Note is brief, with a focus on practical uncertainty methods. It is designed to 
provide specific guidance for application to CSG and large coal mine proposals, with reference to 
other documents on methodologies for groundwater modelling and uncertainty assessments. This 
Explanatory Note is not designed or presented as a comprehensive treatise on uncertainty 
methods. 

This Explanatory Note draws from and must be read in conjunction with: 

 IESC Information Guidelines (Cth, 2018); 

 Australian Groundwater Modelling Guidelines (“AGMG”; Barnett et al. 2012); 

 Modelling water-related ecological responses to coal seam gas extraction and coal mining 
(Cth, 2015); 

 Coal seam gas extraction modelling groundwater impacts (Cth, 2014a); 

 Subsidence from coal seam gas extraction in Australia (Cth, 2014b); 

 Subsidence from coal mining activities, background review (Cth, 2014c); 

 Significant Impact Guidelines 1.3 (water trigger): Coal seam gas and large coal mining 
developments - impacts on water resources (Cth, 2013); 

http://iesc.environment.gov.au/
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 NCGRT National Groundwater Modelling Uncertainty Workshop 2017 (Middlemis et al. 2018); 
and 

 Methodology for bioregional assessments of the impacts of coal seam gas and coal mining 
development on water resources (Barrett et al. 2013). 

2 SOURCES OF UNCERTAINTY 

The subsurface environment is complex and heterogenous, and difficult to directly observe, 
characterise or measure. Contrary to engineering systems which are generally closed, relatively 
simple and well defined or measured, hydrogeologic systems are open, complex and partially 
defined (Neuman and Wierenga, 2003). As groundwater systems are open to influence by 
geology, topography, vegetation, climate, hydrology and human activities, uncertainty affects our 
ability to accurately measure or describe the existing or predicted future states of these systems.  

Simulation modelling is used to investigate current and future system states and thus support 
decisions for groundwater resource assessment, management and policy. The Australian 
Groundwater Modelling Guidelines (AGMG) provide information on simulation modelling (Barnett 
et al. 2012). Groundwater models are simplified scientific constructs that are continuously refined 
to investigate new evidence, conceptualisations and uncertainties, and the effects of management 
options on future eventualities. While models cannot predict the future with total (100%) 
confidence, decision makers and stakeholders use model results to inform decisions on what level 
of risk is acceptable for a specific context. Model results must therefore be accompanied by 
uncertainty analyses that quantify or qualify the confidence we have in the modelled outcomes for 
specified courses of action. 

There are different ways to categorise uncertainty, but it is often lumped into two main types 
(Barnett et al. 2012):  

 deficiency in our knowledge of the natural world (including the effects of error in 
measurements), and  

 failure to capture the complexity of the natural world (or what we know about it).  

Beven and Young (2013) provide a rigorous categorisation of uncertainty as either epistemic or 
aleatory: 

 deficiencies in data/measurements or knowledge/understanding that are each a type of 
epistemic uncertainty (i.e. uncertainty that could be reduced with improved data and/or 
scientific understanding); 

 by comparison, aleatory uncertainty arises from apparent random probability, which is often 
considered to be irreducible (part of the inherent randomness of natural systems), but which 
can be treated in probabilistic/statistical terms.  

For the purpose of this Explanatory Note, it is helpful to consider four sources of scientific 
uncertainty affecting groundwater model simulations: 

 Structural/Conceptual - geological structure and hydrogeological conceptualisation 
assumptions applied to derive a simplified view of a complex hydrogeological reality (any 
system aspect that cannot be changed in an automated way in a model); 

 Parameterisation - hydrogeological property values and assumptions applied to represent 
complex reality in space and time (any system aspect that can be changed in an automated 
way in a model via parameterisation); 

 Measurement error – combination of uncertainties associated with the measurement of 
complex system states (heads, discharges), parameters and variability (3D spatial and 
temporal) with those induced by upscaling or downscaling (site-specific data, climate data);  

 Scenario Uncertainties - guessing future stresses, dynamics and boundary condition changes 
(e.g. mining, climate variability, land and water use change). 
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These four sources of scientific uncertainty result in predictive uncertainty – the bias and error 
associated with model simulations (see Figure 1, after Richardson et al. 2017, and Doherty and 
Moore, 2017). Bias refers to systematic error, which displaces the model outputs away from the 
accepted “true” value, and error refers to the difference (spread) between the average value of 
model simulations and the accepted true value. Bias and error affect the precision of model 
results, even when that model is consistent with the conceptual understanding of the system and 
the related observations and measurements.  

Figure 1 - errors, biases and influences on uncertainty (after Richardson et al. 2017; 
Doherty and Moore, 2017) 

Being overcommitted to one conceptualisation over others (bias), perhaps the wrong one, could 
lead to simulations that overestimate or underestimate impacts. If uncertainty analysis focusses 
only on errors and neglects to account for or discuss biases, incomplete and distorted evidence of 
the modelling accuracy will be provided. 

For detailed background and discussion of uncertainty issues and methodologies, consult the 
NCGRT report on the groundwater modelling uncertainty workshop (Middlemis et al. 2018).  

3 RISK CONTEXT, CAUSAL PATHWAYS AND ADAPTIVE MANAGEMENT 

3.1 Uncertainty is integral to Risk Management 

Risk is defined as the effect of uncertainty on project objectives (AS/NZS 31000:2009). 

Risk is characterised/quantified as a function of the probability and consequences of an outcome. 

Freeze et al. (1990) characterizes the role of models in decision-support as quantifying the level of 
risk associated with management options. It follows that if a model is applied to support 
environmental decision-making, its simulations of the consequences (impacts) of management 
options must quantify the related uncertainties (Doherty and Moore, 2017). 

Uncertainty analysis is therefore an integral part of a robust risk management framework, as it 
informs and complements other aspects such as risk assessment and mitigations/treatments, 
communicating outcomes and prioritising effort to reduce uncertainty (e.g. by acquiring data on 
key processes) (Walker, 2017). A key example of high priority (but relatively low cost) data that 
reduces uncertainty in groundwater models is accurate LiDAR topographical data. Accurate 
definition of the interface between the surface and the sub-surface is critical for implementing 
boundary conditions in a model to represent surface water features (creeks/rivers), 
evapotranspiration and spring features (Doble and Crosbie, 2017).  

In environmental management, risk has negative connotations generally associated with the 
hazards or impacts of a development. In this sense, risk is one possible (negative) consequence 
of uncertainty. Other (positive) consequences of uncertainty can also be identified (Begg, 2013) by 
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way of opportunities to achieve desired benefits (e.g. to justify expenditure on a mining project 
where sound environmental management can manage other project risks). This highlights the 
point that value judgements are involved in all risk assessments and the value judgements depend 
entirely on the economic, social and/or environmental values established in public policies, 
business cultures and community viewpoints. While scientific studies provide objective information 
on environmental risks, impacts, mitigations, benefits and management, subjective value 
judgements are also involved via business, political and/or community viewpoints.  

The precautionary principle is incorporated in the principles of ecologically sustainable 
development (ESD), which are promoted by the objectives of the EPBC Act 1999 (Cth). ESD 

principles establish that social considerations are a key factor in decision‑making processes, 
along with economic and environmental factors. Further information on the precautionary principle 
and ESD is provided in the report on the 2009 independent review of the EPBC Act (Australian 
Government; 2009). These principles are very important, and have been tested in Australian law, 
notably in the Queensland Land Court case in 2015 in relation to the proposed Adani Carmichael 
coal mine (QLC 48).  

In this Explanatory Note context, the precautionary principle may be summarised as follows: if a 
development raises the risk of harm to the environment (i.e. in non-trivial likelihood and 
consequence terms), then proportionate precautionary measures should be taken even if some 
cause and effect relationships are not fully established scientifically. Importantly, if both key pre-
conditions for the application of the precautionary principle are established (the threat of serious or 
irreversible environmental damage, and scientific uncertainty as to the nature and scope of the 
threat of environmental damage; noting that these conditions or thresholds are cumulative), the 
burden of proof shifts to the proponents of the development (Australian Government, 2009; item 
13.21). Hence the critical need to investigate causal pathways when designing groundwater 
modelling approaches for unbiased investigation and quantification of uncertainty. 

This Explanatory Note focuses on environmental management, and thus it mainly discusses the 
negative aspects of risk. However, the techniques described herein to analyse hydrogeological 
uncertainty can be used to guide decisions on opportunities that can generate cost-effective 
benefits for proponents of developments (e.g. by investigating and minimising dewatering 
uncertainties) as well as for all stakeholders via adaptive environmental management (e.g. 
establishing threshold impacts/triggers), based on the consideration of causal pathways for 
potential impacts and the effects of uncertainty.  

3.2 Causal Pathways 

The Information Guidelines highlight the need to investigate causal pathways for potential impacts 
on the water resources and water-dependent assets arising from mining or CSG operations via the 
stressors of dewatering or depressurisation of hydrogeological units. Identifying relevant causal 
pathways is a crucial part of uncertainty quantification. It will determine the modelling approach, 
the sources of uncertainty to consider and most importantly, the model outcomes required. 

Causal pathways should be identified by conservatively considering potential connectivities 
between groundwater units and/or surface water features and related ecological assets such as 
groundwater dependent ecosystems (GDEs). More detail on causal pathways and conceptual 
model development is provided in Holland et al. (2016) and the IESC report on modelling water-
related ecological responses (Cth, 2015). OGIA (2016a, 2016b) has published good examples of 
hydrogeological and connectivity investigations. Practical guidance on GDEs is provided in Eamus 
et al. (2006), Eamus (2009), Richardson et al. (2011), and BoM (2015). 

The Information Guidelines therefore require detailed descriptions of the modelling approaches 
used to assess the likelihood, consequence or significance of impacts and the overall level of risk 
to water-dependent assets, and of the data quality and inherent uncertainties in the baseline 
conditions and the model simulations of predicted impacts.  

A conservative approach to modelling and impact assessment may be warranted in terms of 
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aiming to over-predict the impacts of development, as that provides confidence in assessments in 
the face of uncertainty (this is discussed further in the next few sections). On the other hand, an 
overly conservative approach is not necessarily warranted in terms of the potential cost of missed 
economic opportunity. These issues are discussed further in section 4. 

Bioregional Assessments (BAs) provide useful case studies for environmental impact 
assessments for large coal mines and CSG proposals. The guiding principles from the Information 
Guidelines were used to develop the BA methodologies (Cth, 2013) for the investigation of key 
issues, including: 

 potential direct, indirect and cumulative impacts on water resources; 

 causal pathways linking depressurisation and dewatering of coal seams at depth with impacts 
on anthropogenic and ecological values of water-dependent receptors and assets; 

 conceptual models and quantitative, semi-quantitative or qualitative analyses for estimating 
the likelihood of risks and/or impacts to receptors and related values, along with the level of 
confidence of scientific advice on these impacts; and 

 monitoring, evaluation and review programs, and related risk assessment and treatment 
studies, to minimise or mitigate impacts on water resources. 

However, a BA approach should not be considered a template for an Environmental Impact 
Statement (EIS), as it has a somewhat different objective, scope and scale. While BAs provide 
advice on the development stressors, causal pathways, receptors and assets, they are not 
development-specific EIS studies. However, BAs do provide useful information to EIS studies via 
the regional context information and especially the independent cumulative impacts assessment.  

The Cooper sub-region Bioregional Assessment (Cth, 2017) considered causal pathways and the 
coal development horizon, concluding that detailed modelling for impact assessment was not 
warranted, and that conceptual modelling would be adequate at that time. This example 
demonstrates how establishing a low risk context via a causal pathway and risk assessment at an 
early stage can justify a qualitative approach to impact and uncertainty assessments, especially 
under adaptive management framework conditions (e.g. subject to future changes to the Cooper 
Basin coal development pathway). 

3.3 Adaptive Management 

Adaptive management is often justifiably used to address environmental issues in the face of 
uncertainty. However, the large time lags affecting groundwater processes can mean that once an 
action is taken, it may be difficult to reverse the impacts where risk treatments are limited for 
groundwater actions (Walker, 2017). For example, by the time monitoring shows that a significant 
ecological asset will be affected, it may be too late to effectively act in some cases, in that turning 
off the pumps will not solve the problem (even if that were an immediate action) due to the 
hydrogeological time lag effects. This drives the need for a conservative approach to impact 
assessment, including careful analysis of uncertainties and investigation of options for risk 
treatments and mitigation to understand and communicate the residual risk and the ability to 
adaptively manage. 

4 GUIDING PRINCIPLES FOR UNCERTAINTY ANALYSIS 

From a management perspective, modelling is considered to have failed if there is sufficient bias 
for a poor decision to be made (e.g. by lack of transparency or uncertainty analysis), especially if 
the consequence is large (Walker, 2017). 

A modelling study should be designed to quantify its own reliability by accompanying its 
simulations with an objective assessment of uncertainty so that model users have transparent 
assurance that uncertainty is not underestimated (Doherty, 2010). Objective uncertainty analysis 
gives end-users confidence that a future potential impact (e.g. threshold impact exceeded) has 
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been considered carefully in an unbiased way1. In statistical hypothesis testing terms, this means 
that there is a low risk of a type 2 error (i.e. false rejection of a hypothesis that has unwanted 
outcomes). However, statistical error discussions such as that can complicate groundwater 
management matters unnecessarily, so in simple terms, we mean this: if modelling is used to 
predict that an unwanted outcome won’t happen (e.g. via a biased model that overlooks important 
causal pathways), but it can indeed eventuate (with non-trivial probability), then we should 
consider that the model study has failed. 

In an ideal world where every professional is expert in every scientific discipline applied to 
groundwater investigations, the following points would define an ideal uncertainty workflow: 

1. define decision-critical potential impact(s); 

2. define modelling study failure in terms consistent with a type 2 error, but in groundwater-
related threshold impact terms that are specific and measurable in space and time (e.g. 
drawdown at a GDE of more than 2m in X years; spring discharge not less than Q50 in Y 
years; river baseflow more than Q95 in Z years); 

3. design an efficient and effective modelling methodology of processing expert knowledge and 
data (via a modelling tool consistent with historical measurements of system responses to 
stress), with due consideration of potential bias, to quantify the probability of the unwanted 
outcome (threshold impact);  

4. strike a balance between model simplicity and complexity in developing the model(s) for the 
purpose of uncertainty evaluation, commensurate with the risk/consequence profile of the 
project (may require more than one model); 

5. demonstrate best endeavours to avoid under-estimating uncertainties relating to threshold 
impacts by invoking methods that consider potential causal pathways for impacts and 
including simplification-induced potential for error and bias in the hypothesis testing process; 

6. justify increments in model complexity if uncertainty bounds need to be narrowed through 
extra information (may allow rejection of a hypothesis that cannot otherwise be rejected). 

Further information is provided herein on the key elements of how model uncertainty can be 
analysed in the context of supporting a practical EIS project for large coal mining and CSG 
proposals. This should not be interpreted as a step-by-step guide to comprehensively analysing 
uncertainty. 

5 IMPORTANCE OF AVOIDING BIAS  

In the sense of support for environmental decision-making, the potential impact (unwanted 
outcome) could take many forms. For example, it may be catastrophic, such as very low 
groundwater levels that cause a spring to cease flowing. It could be some other less critical 
criterion that indicates failure of an environmental management plan, such as lower-than-threshold 
stream flows for durations that compromise stream health (Doherty and Moore, 2017). 

Tolerance of failure is related to the cost of failure (however that may be manifest). If the cost is 
relatively low, then a decision-maker can tolerate a moderate probability of failure, provided this 
reduces implementation costs for any attractive and effective risk treatment (i.e. economically and 
socially acceptable options that are able to reduce risk and be implemented in a timely fashion). 
On the other hand, if the cost of failure is high (e.g. unwanted impacts on high value ecosystems), 
the probability of its occurrence must be low for a management option to be deemed attractive and 
effective. 

This means that conceptual models for large coal mines and CSG developments must adopt 
unbiased1(see previous footnote) ways of analysing how causal pathways can propagate impacts from 

                                            
1 Biased analysis may be acceptable, provided an extremely conservative methodology is applied logically, 
justified transparently and documented comprehensively (e.g. Ferré, 2017). 
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depressurisation and dewatering of coal seams to manifest as direct, indirect and cumulative 
impacts on water-related and other receptors, and to investigate the key sources of uncertainty. 
More than one model conceptualisation or realisation may need to be tested in terms of the effect 
of conceptual or other sources of uncertainty on model outputs, which may lead to more than one 
mathematical model, as outlined in the AGMG (Barnett et al. 2012). The multiple models may be 
of different types (e.g. conceptual or analytical or numerical), depending on the objective to be 
investigated (it is not possible to be prescriptive). 

The unbiased investigation of causal pathways is a key element of the ecological values analysis 
at the problem definition stage, along with data analysis, conceptualisation, and the initial risk 
analysis and treatment options assessment. 

6 MODELLING WORKFLOW FOR UNCERTAINTY ANALYSIS 

Uncertainty analysis must be considered at the problem definition and at each subsequent stage 
of the workflow. It must be integrated within a risk management framework (i.e. initial risk 
assessment and subsequent review/revision) and involve meaningful (‘without prejudice’) 
engagement/consultation between proponents and agencies on methodologies and assumptions.  

A conceptual example is illustrated in Figure 2 (after Walker, 2017, based on discussions in 
Gillaume et al. 2016, and Peeters, 2017b). Initially, a preliminary risk assessment is done, possible 
risk mitigations are considered, and the model is conceptualised to meet the objectives. As the 
modelling and assessment workflow proceeds through its iterations, there is a winnowing of the 
objectives according to risk, and complexity may be added or refined as necessary. In the 
preliminary stages, there may not be any need for numerical modelling, and if risks are not high at 
any stage, nothing more may be required and resourcing the investigation may be curtailed. 

Figure 2 - schematic iterative approach for groundwater modelling involving setting 
objectives, risk mitigation options and modelling conceptualisation (Guillaume et al. 2016) 

The AGMG state that objective consideration of uncertainty is warranted for every groundwater 
project (Barnett et al. 2012). For high value or risk projects, the lack of an objective uncertainty 
assessment is a metric for model failure. For low risk projects, it may be acceptable to describe 
the effect of uncertainty on the project objectives in more qualitative terms. Most large coal mines 
and CSG projects would be classified as high environmental risk, although some projects may be 
able to be justified as low risk. 

The following key principles drive the modelling workflow to objectively assess uncertainty, all of 
which are consistent with the AGMG (Barnett et al. 2012), including engagement with regulators at 
key stages (Table 1, Figure 3; see next page): 
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 While all projects require a qualitative uncertainty analysis as a minimum, discussing how 
model assumptions can potentially affect simulations, high risk projects also require a 
quantitative uncertainty assessment to a level of detail commensurate with the potential risks 
and/or consequences of the project (i.e. this means that a preliminary hydrogeological risk 
assessment is needed at an early stage in the project); 

 Modelling methods must consider the coal mining or CSG development stressors (dewatering 
and depressurisation) and causal pathways for potential impacts on water resources and 
water-related assets; 

 Explicitly define project objectives and what the model needs to predict in specific and 
measurable terms (e.g. threshold or trigger impact terms provide information on which 
decisions may be based objectively); 

 Design the methodology to provide information about the uncertainty in conceptualisations 
and model simulation outputs in a way that allows decision makers to understand the effects 
of uncertainty on project objectives and the effects of potential bias (the model must be 
specifically fit for this purpose); 

 Strike a balance between model simplicity and complexity in developing the model(s) for the 
purpose of uncertainty evaluation, commensurate with the risk/consequence profile of the 
project (may require more than one model); 

 Constrain the model simulations with available observations and information; 

 Present the range of model outcomes that are consistent with all observations and information 
(calibration-constrained model outcomes); 

 Prepare reports to transparently and logically discuss modelling and methodology 
assumptions and choices and how they affect simulations, uncertainties and potential bias, 
and present the results clearly such they are not prone to misinterpretation; 

 Iterate through the workflow during the project, revisiting objectives, assumptions, 
conceptualisations and simulations, as well as the risk assessment (with consideration of any 
risk treatments applied to mitigate impacts), in a process of engagement with agencies. 

Engagement with regulatory agencies is required at the outset and at subsequent key stages, to 
discuss and agree the methodologies and ongoing refinements and to understand the implications 
of the results. Such engagement can be conducted on a ‘without prejudice basis’. Effective 
communication requires engagement throughout the investigation, not simply at the end to present 
the results (Richardson et al. 2017; Barnett et al. 2012); see also section 12.1.  
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Table 1 - modelling uncertainty analysis iterative workflow summary 

 

 

Figure 3 - modelling uncertainty analysis iterative workflow (after Peeters, 2017b) 
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The high profile of global issues such as climate variability, energy security and controversial 
developments has raised awareness of uncertainty and risk amongst environmentalists, industry, 
regulators and the community. This has raised expectations that scientific results be presented in 
an honest, precise and transparent fashion. There are drivers for and occurrences of both under- 
and over-statement of uncertainties (e.g. reflecting unwarranted distortion of the assessments), in 
some cases deliberately aimed at undermining the science (Walker, 2017). Transparent 
documentation provides objective evidence of the uncertainty methods and assumptions applied, 
and formal engagement provides confidence to the regulator and community that all potential 
impacts have been considered, with appropriate proposed monitoring and adaptive management 
mitigations/treatments. 

Decision-makers need to know the ‘most likely’ outcome and to understand whether there are 
circumstances that may result in unacceptable outcomes and what risk or mitigation treatments or 
adaptive management initiatives may be applied. Careful choice of language that is aligned with 
decision-making (e.g. positive or negative framing, and the use of thresholds) can reduce cognitive 
strain, making it easier for all stakeholders to understand the ideas presented without further 
analysis (Richardson et al. 2017). For example, a 5% chance that drawdown will be greater than 
1m is the same as a 95% chance that it will be less than 1m; the latter may be a more positive 
framing with less cognitive strain. 

7 MODELLING WORKFLOW, CONFIDENCE LEVEL, CONDITIONAL CALIBRATION 

7.1 Modelling Workflow (conceptual viewpoints) 

The model uncertainty workflow outlined herein differs from the traditional model workflow outlined 
in the AGMG of design, calibrate, predict and assess sensitivities (Figure 4, after Ferré, 2016).  

Figure 4 - conceptual modelling workflow viewpoints (after Ferré, 2016) 

Although the uncertainty workflow differs conceptually from the traditional workflow, the innovation 
and adaption of modelling methods is encouraged by the AGMG itself (Barnett et al. 2012), and 
this Explanatory Note is consistent with and builds on the AGMG. A different view of the workflow 
is warranted because, while the uncertainty analysis workflow includes traditional elements of 
model building (design, calibration and sensitivity), an uncertainty-driven approach is designed 
and applied specifically to support decisions by exploring uncertainties within a risk and adaptive 
management framework.  

The traditional workflow tends to result in complex models, even though the AGMG encourages 
finding the right balance between complexity and simplicity for the project objectives.  

The uncertainty-driven approach usually requires carefully designed models with short run times 
for the large numbers of runs involved. However, careful design can take many forms, such as 
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ensuring stable model simulations and that complexity is included where it is relevant to the 
project objective (“effective simplicity”), while not using long run times as an excuse to avoid 
necessary complexity.  

7.2 AGMG Model Confidence Level Classification 

While this Explanatory Note is philosophically integrated and consistent with the AGMG (Barnett et 
al. 2012), there are two other areas where a slightly different focus is recommended (in addition to 
the conceptual workflow diagram above). Firstly, while the model confidence level classification 
table (AGMG, Section 2 and Table 2-1) is reasonable, the related commentary and guidance is 
poor and self-contradictory on some elements. Alternative methods of confidence level 
assessments have been tested including applying a method of indicating which attributes in the 
table are satisfied for a given model, and assessing the confidence level via consideration of the 
score counts in each class (an example is presented in Figure 5, based on an original suggestion 
by Dr Noel Merrick, pers. comm.). This avoids the current tendency where one guideline comment 
may be “cherry-picked” to undermine the model confidence classification, rather than considering 
the balance of model performance against the entire table of attributes (e.g. with reference to 
Figure 5, the AGMG commentary indicates that a single Class 1 attribute is sufficient to classify 
the model as Class 1 overall, even though the weight of evidence indicates otherwise).  

Figure 5 - AGMG model confidence level case study example (after N. Merrick, pers. comm.) 

However, this approach may also be prone to manipulation, and it is recommended that an 
improved method would require the modeller or reviewer to indicate in the table which conditions 
are satisfied, explain why others are not satisfied and why this is relevant to the model objectives, 
outcomes and uncertainties. This approach is consistent with other recommendations in this 
Explanatory Note for modellers to justify assumptions and choices in technical reports in a manner 
that is open, transparent and amenable for scrutiny. 

The other divergence from the AGMG is that, while it recommends linear uncertainty methods due 
to their computational efficiency, this Explanatory Note lists linear uncertainty methods as one of 
several approaches for uncertainty analysis. Linear methods may be appropriate for a 
groundwater modelling project, provided that the underlying assumptions can be shown to be 
justified. 

7.3 Conditional Calibration 

The traditional workflow has been characterised as a means of reducing parameter bias and 
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uncertainty through calibrating the model against measured observations of historical hydrologic 
system behaviour. The process is also known as parameter identification or estimation, inverse 
solution or history matching (Barnett et al. 2012; Neuman and Wierenga, 2003). A model that is 
demonstrably consistent with monitoring data (especially if head and flux calibration targets are 
matched) is traditionally deemed to be a reliable deterministic simulator of future behaviour.  

However, neither the structure nor the parameter values of a deterministic model are unique. This 
"equifinality" problem has long been recognised as generic and not simply one of identifying a 
system's "true" model structure or parameter values (Beven, 1993). In fact, a "true" model for a 
hydrologic system does not exist, due to the sources of uncertainty outlined previously. Even the 
most complex model can (by definition) only be approximate in its attempted simulation of 
environmental processes. 

Doherty and Moore (2017) show that the calibration process does not reduce the uncertainty of a 
simulation where it is sensitive to parameters/combinations that lie within the “calibration null 
space”. The calibration null space here refers to those model parameters and combinations that 
are not informed by the available historical measurements.  

However, Doherty and Moore (2017) also show that calibration is a valid first step in a two-step 
uncertainty analysis process using linear methods (see section 11.2): 

1. finding a history match (inverse) solution of minimum error variance2 by fitting model outputs 
to the calibration dataset of heads and fluxes (preferably during a period of wide-ranging 
hydrological stress); this reduces non-uniqueness and can be achieved using the uncertainty 
analysis techniques of pilot point parameter estimation with Tikhonov regularisation (a means 
of ensuring that parameter estimates do not move far from initial estimates that are 
considered to be reasonable; Barnett et al. 2012); and then; 

2. quantifying the error in simulations made by the history-matched model. 

A model that is carefully calibrated (and/or subsequently validated) in this way should be qualified 
as a conditionally calibrated (validated) model in that it has not yet been falsified by tests 
against observational data (Beven and Young, 2013).  

Conditionally calibrated models are useful for running simulations within the range of the 
calibration and evaluation data (Barnett et al. 2012), while allowing for their updating in the light of 
future research and development or changes in catchment characteristics. 

A conditionally calibrated model can be considered a ‘receptacle for expert knowledge’ (Doherty 
and Moore, 2017), or a ‘good representation of the system of interest’ (Barnett et al. 2012), in 
terms of: 

 the conceptualisation and parameterisation used to represent real world hydraulic properties 
with effective simplicity (or appropriate complexity), and  

 the historical behaviour of the system (as the history match (conditional calibration) constrains 
parameters to a narrow stochastic range).  

Deterministic scenario analysis using a conditionally calibrated model and subjective probability 
assessment is discouraged as an uncertainty quantification approach due to its questionable 
subjectivity. However, if it can be established that the conceptualisation and parameterisation is 
conservative (i.e. over-estimates impact), then a deterministic scenario analysis can be used as a 
screening tool for further investigation and detailed modelling, or it may be used in qualitative 
uncertainty analysis for a low risk context (e.g. see section 11.1). 

A conditional calibration approach can be used to provide the prior probability foundation for a 
(tractable but not strictly) Bayesian investigation of stochastic uncertainty (see section 11.3). 
However, it does not necessarily reduce sources of predictive bias that may be introduced via 

                                            
2 Minimum error variance means minimum spread of the error; it does not mean that the bias of a simulation 
is minimised – see the bias and error graphic shown in Figure 1 (section 2). 
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simplification assumptions or via a conditional calibration process that compensate for model 
defects via biased parameter values of the history-match model (Doherty and Moore, 2017).  

8 MODEL COMPLEXITY / SIMPLICITY 

8.1 Geological Complexity 

The level of hydrogeologic complexity incorporated in any model should be commensurate with its 
purpose (Neuman and Wierenga, 2003). It is worth reiterating for the purpose of this Explanatory 
Note, the purpose of a modelling study is to provide information about the uncertainty in 
conceptualisations and model simulation outputs in a way that allows decision makers to 
understand the effects of uncertainty on project objectives and the effects of potential bias. 

Refsgaard et al. (2012) concluded that the importance of geological models is lessened for flow 
modelling simulations, provided that (history match) conditional calibration against head and 
discharge data is performed, and that model simulations are confined; (i) to the same types of 
variables used for conditional calibration (e.g. head and flux data), and (ii) to similar hydrological 
stress regimes (pumping, climate and timeframes). These principles are consistent with the AGMG 
guiding principles (Barnett et al. 2012). It is argued that, in these cases, the inevitable (unknown) 
errors in the geological interpretations can (to some extent) be compensated by the biased 
parameter values of the history-match model. However, they warn that geological model 
uncertainties become crucial in situations where groundwater models that are history-matched to 
head and discharge data for the historical pumping or climate record are then used for 
extrapolation beyond that conditional calibration base. In such ‘out of range’ simulations, the 
geological structure uncertainty may often be the dominant source, and thus alternative 
hydrogeological conceptualisations should form part of the uncertainty assessment. 

8.2 Model Complexity Overheads 

Highly complex models are expensive to develop, and usually run slowly or are not numerically 
stable. This hinders the methods used for uncertainty analysis to quantify the extent to which the 
model complexity and parameterisation allows for the available observations to be matched within 
specified criteria in order to reduce predictive uncertainty. It is also difficult to scrutinise (or indeed 
to communicate) all aspects of highly complex models, which renders them less transparent, 
which in turn can lead to a loss in confidence in the model results (Saltelli and Funtowicz, 2014). 

There are also concerns that the AGMG (Barnett et al. 2012) are being used inappropriately in 
some cases to justify “indiscriminate complexification” of models, rather than “effective 
simplification” (Voss, 2011b) where that would be more appropriate for the investigation context, 
objectives and resources (Doherty, 2010).  There are also cases where opponents of coal or CSG 
developments have suggested that impact assessments may be fatally flawed because it is 
claimed that models do not capture adequate complexity. 

Whereas increased complexity does not necessarily translate directly into a stronger technical 
basis for regulatory decisions, the use of overly simplified models may result in erroneous 
decisions. An approach is advocated in this Explanatory Note that goes beyond platitudes of 
subjectively making a model “as simple or complex as required, but not too simple or complex” as 
many guidelines recommend. Rather; 

 the model must be designed to be specifically fit for the purpose of providing information 
about uncertainty in a way that allows decision makers to understand the effects of 
uncertainty on project objectives, and the effects of potential bias; 

 engagement with regulatory agencies is required from the outset and at all stages 
throughout the modelling study, to discuss and agree the uncertainty analysis 
methodologies and understand the implications of the results. 
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9 UNCERTAINTY QUANTIFICATION TECHNIQUES  

The practical implementation of the concepts described above can be a daunting task, especially 
when one seeks an approach that respects the theoretical nuances of uncertainty quantification in 
a transparent way, while being pragmatic in the face of modelling resources that are never 
unlimited.  

There has been a wide variety of uncertainty quantification techniques developed for water 
resources in the last four decades (Maier et al. 2014). In very general terms, these can be 
classified in three groups, and for practical projects, these three different approaches may be 
considered to arrive at a probabilistic assessment of the model outcomes to inform a risk 
assessment:  

1. Deterministic Scenario Analysis with subjective probability quantification 

The model is run with a limited number of different plausible parameter combinations. In 
hydrogeological model reports, this is often referred to as sensitivity analysis (see section 0 for 
comprehensive discussion of sensitivity analysis). For these results to be used in a risk 
analysis, a subjective, often informal probability needs to be specified (e.g. a description such 
as ‘worst case’). 

2. Deterministic modelling with linear probability quantification 

The model is calibrated (either automated or by trial and error) to obtain a single parameter 
combination that is considered to be realistic and minimises the mismatch between observed 
and simulated values. The model is assumed to behave linearly in the vicinity of this optimal 
parameter combination and it is further assumed that the uncertainty in parameters and 
observations can be described through multivariate normal distributions. This may require 
transforming parameters and observations through for instance a log-transform. Using linear 
error propagation equations, the predictive uncertainty can be expressed as a confidence 
interval based on the standard deviation. 

3. Stochastic modelling with Bayesian probability quantification 

An ensemble of model predictions is generated, based on a large number of model evaluations 
with different parameter values that are all consistent with the observations. 

Each of these practical methods does not have to be applied to any case. There is not a single 
preferred method, and there may be alternative methods (not outlined herein) that may be justified 
as more suitable. It is, however, crucial to acknowledge that each uncertainty analysis method has 
different underpinning assumptions. It is the role of the modeller to discuss and justify each 
assumption in the technical report(s) contained in EISs in a manner that is open, transparent and 
amenable for scrutiny, as well as presenting the results clearly such they are not prone to 
misinterpretation. Section 11 discusses in greater detail the main assumptions, advantages and 
drawbacks of each group of uncertainty quantification techniques.  

The assumption hunting approach discussed by Peeters (2017a) provides a framework to 
systematically discuss assumptions in terms of the rationale behind the assumption chosen and its 
potential effects on the simulations required of the model to address the project objectives. This is 
discussed in greater detail in section 11.4. 

Sensitivity analysis can play an important role in providing insights to the modelled system, by 
identifying which parameters can be constrained by data and which parameters have the greatest 
influence on the model outcomes. This is a first step in analysis of data worth or the value of 
information to guide further data collection, model development and monitoring design. Section 0 
describes the role of sensitivity analysis in an uncertainty quantification workflow. 

There is, however, a set of prerequisites that a groundwater model must satisfy before any of the 
approaches listed above can be applied, which is the topic of next section. 
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10 MODEL PREREQUISITES FOR UNCERTAINTY QUANTIFICATION 

The prerequisites for uncertainty quantification of groundwater model outcomes are listed below. If 
any of these prerequisites is not satisfied, adequate quantification of uncertainty is not possible 
(qualitative or semi-quantitative uncertainty analysis may be possible).  

10.1 Clearly defined model outcomes in space and time 

It is not possible to quantify the uncertainty of a groundwater model as a whole. It is only possible 
to quantify the uncertainty of model simulations. It is therefore essential that the model outcomes 
that will be used to inform the decision-making process are explicitly defined in space and time. 
Examples are the maximum drawdown at a key bore or spring, the change in surface water 
groundwater exchange flux along a river reach for a specific period or the drawdown contours 
during or after cessation of coal or CSG development activities. 

Some policy documents explicitly list trigger levels or impact thresholds (such as the NSW Aquifer 
Interference Policy). For assets where these are applicable, model outcomes can be specified 
directly as a function of these thresholds and trigger levels. If these are not available, the relevant 
model outcomes and threshold levels need to be discussed and agreed upon with the various 
stakeholders before modelling commences. 

10.2 A list of parameters or model features that are included in the uncertainty analysis 

There is a practical upper limit to the number of model features that can be included in the 
uncertainty quantification. Before starting the analysis, a decision is needed on which parameters 
to include and which parameters to fix (exclude from the analysis). This selection needs to be 
done during the conceptualisation phase of the groundwater model as it affects the design and 
construction of the numerical model. 

A more far-reaching consequence of this selection is that the uncertainty analysis will not result in 
a full probabilistic simulation, but a probabilistic simulation that is conditional upon the source of 
uncertainty included in the analysis. It is paramount that these assumptions and their justifications 
are communicated clearly so that reviewers, regulators and other stakeholders can easily identify 
which sources of uncertainty are included and which are not. 

The parameterisation of models traditionally has a focus on (conditional) calibration, in which 
parameters are included to achieve the smallest residuals to historical measurements in a least-
squares error term sense. These are not necessary the same parameters that have the greatest 
influence on simulations. A trivial example is that effective porosity in a confined aquifer will have 
very limited influence on groundwater head simulations but will dominate any transport 
simulations. 

Due to the many non-linearities inherent to groundwater modelling, identifying which parameters 
can be constrained by data and which are important is often non-trivial. This requires a 
comprehensive sensitivity analysis, which is discussed in detail in section 0.  

10.3 Probability distributions for each of the parameters included in the uncertainty 
analysis and a description of the covariance between parameters 

For each of the three types of practical uncertainty quantification methods listed above in section 
0, it is important to define the plausible range over which a parameter can vary. At its simplest, a 
uniform distribution describes a range between a minimal and maximal value. Normal or lognormal 
distributions are fully characterised by a mean and standard deviation, while empirical distributions 
can take an arbitrary, multimodal shape. Some parameters may be correlated for lithological 
reasons, such as hydraulic conductivity (K) and storativity (S) for instance, or may be spatially 
correlated. This correlation needs to be expressed as a covariance between parameters. In some 
models, the parameterisation can be quite complex, such as a depth-dependent hydraulic 
conductivity or a multiplier on a spatially variable recharge field. For such complex 
parameterisation it is advisable to verify that the specified range of parameter values result in 
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plausible model input values. 

10.4 A converging groundwater model over the entire plausible range of model parameters 

It is essential that the groundwater model can be evaluated over the entire range of parameter 
combinations defined above. It is recommended to submit the model to a stress test in which a 
number of extreme parameter combinations are tested for convergence before committing to a 
computationally intensive automated conditional calibration or stochastic model evaluation. 

By strategically choosing parameter combinations, this stress test can yield very useful insights on 
parameter sensitivity and model behaviour (for further information, refer to Crosbie et al. 2016). 

10.5 The measurement uncertainty of each observation and/or a project-specific 
assessment of acceptable model to measurement misfit 

The reference model used in the uncertainty scenario analysis needs to have an acceptable misfit 
between simulated and observed data before it can be used in simulations. In uncertainty 
quantification, this misfit is used to obtain the probability of any parameter value. The goal is to 
find parameter combinations that result in model residuals that are equal to or smaller than the 
measurement uncertainty.  

Observations can be affected by local processes not captured in the model and it is therefore 
recommended to include these upscaling issues in the measurement uncertainty. Alternatively, 
one can think of the measurement uncertainty as the maximum acceptable misfit of model to 
measured values. Defining this acceptable misfit is very much project- and model-specific and it is 
the task of the modeller, in discussion with the client, regulator and other stakeholders, to define 
and justify the acceptable misfit and how to integrate this in the uncertainty quantification workflow. 

11 UNCERTAINTY QUANTIFICATION APPROACHES 

This section discusses in greater detail the three types of uncertainty quantification approaches 
listed in section 0, highlighting the advantages, drawbacks and potential pitfalls of each method. 
This document does not recommend any particular software, nor is it intended to give a step-by-
step description of how to carry out an uncertainty analysis. This is covered in other publications 
such as Peeters (2017b) and Doherty (2015). Each section does however list the main 
assumptions for each approach that need to be transparently justified in the modelling report. 

11.1 Deterministic Scenario Analysis with Subjective Probability 

In scenario analysis, a single realisation of a numerical model (e.g. the model that best fits the 
historical observations) is used to make simulations. For such results to be useful in a risk 
framework, it is necessary to express the probability of this single realisation. This is a subjective 
assessment, based on the available knowledge of the system, the design of the model and the 
modeller’s experience.  

The model with parameter values that best match the observations is often described at the ‘most 
likely’. Many modellers aim to be conservative in parameter selection, especially parameters that 
are not easily constrained by observations. In such situations, where some aspects of the model 
will be ‘most likely’, while others are ‘conservative’, it becomes difficult to assess if the simulations 
are ‘most likely’ or ‘conservative’ overall.  

To further complicate this issue, parameters are not necessarily conservative for all model 
outcomes. By way of a simple example, for a given pumping rate, high hydraulic conductivity 
values can be conservative when calculating the time lags that affect streamflow depletion. The 
higher the hydraulic conductivity is, however, the smaller the drawdown. High conductivity values 
are in this case not conservative for drawdown simulation effects. 

Perturbing parameter values in an ad-hoc sensitivity analysis (e.g. one parameter at a time) by an 
arbitrary amount does provide some insight to model behaviour, but is not sufficient for uncertainty 
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quantification if the following questions cannot be answered: 

 What is the probability of the perturbed value and corresponding simulations? 

 How is the amount of perturbation determined and how does this relate to the probability 
distribution of the parameters (see section 10.3)? 

 Are parameter interaction effects accounted for? 

Scenario analysis with subjective probability assessment is strongly discouraged as an uncertainty 
quantification approach, especially since the subjectivity of the assessment can readily be 
questioned.  

A comprehensive, formal sensitivity analysis is encouraged, such as through analysis of the 
Jacobian matrix of a model or an ensemble of model runs, as it can be used to objectively assess 
the importance of particular parameter values and it will also allow a more robust uncertainty 
quantification (see section 0). 

This does not mean that the scenario analysis approach is without merit, whether or not a formal 
comprehensive sensitivity analysis is conducted. If it can be established that the conceptualisation 
and parameterisation is conservative, a scenario analysis can be used as a screening tool to 
delineate areas for further research and detailed modelling, or it may be used as part of a 
qualitative uncertainty analysis (more details are provided in Peeters 2017b), especially if a formal 
sensitivity analysis is undertaken. 

11.2 Deterministic Modelling with Linear Probability Quantification 

Linear error propagation techniques can be used to compute simulation confidence intervals for 
any given model with a single set of parameter values (the conditionally calibrated model). In the 
following, this is referred to as the reference model (e.g. the model that best fits the historical 
observations).  

These linear error propagation techniques form the basis of the PREDVAR and PREDUNC tools 
provided in the PEST package (Doherty, 2016). The main assumptions are that: 

1. The model behaves linearly in the immediate vicinity of the selected parameter values. 

2. The parameter values, or their transformed values, are normally distributed. Interactions 
between parameters are described through multivariate normal distributions. 

3. The parameter values used in the reference model represent the mean of the normal 
distribution. 

4. The measurement uncertainty is normally distributed. Correlation in measurement uncertainty 
is captured through a multivariate normal distribution. 

5. The model outcomes are normally distributed. 

The model is evaluated at least twice for each parameter. The change in model outcome 
corresponding to perturbing each parameter in isolation is captured in what is referred to as the 
Jacobian matrix. As shown in Moore and Doherty (2005), this matrix can be combined with the 
covariance matrix describing the uncertainty in parameters and the covariance matrix describing 
the measurement uncertainty to calculate the prediction uncertainty. The model outcomes of the 
reference model are considered to be the mean of a normal distribution and the result of the error 
propagation provides the standard deviation. 

An automated conditional calibration seeks a parameter combination that provides a best fit in a 
least-squares sense, for instance by using the Levenberg-Marquardt algorithm as implemented in 
PEST. In subsequent linear error propagation, this parameter combination is then considered as 
the mean of the multivariate normal distribution. An automated conditional calibration, even when 
using regularisation, can result in parameter combinations that are only a local rather than global 
minimum of the response surface.  
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Another pitfall is that, due to parameter correlation, parameters compensate for conceptual issues 
or for other parameters (e.g. the response of an aquifer often depends on ratios of model 
parameters, such as aquifer diffusivity (T/S), or recharge and transmissivity (R/T); Barnett et al. 
2012). The classic example is provided in Doherty (2010), where incorrectly specified head 
boundary conditions lead to a small residual in head values, but biased hydraulic conductivity 
estimates. Using such biased values in a simulation obviously compromises the simulation and its 
confidence intervals. Relatively low-cost data-gathering techniques, such as a LiDAR survey of 
river bed and spring elevations, can greatly reduce the uncertainty in boundary conditions and by 
consequence, the uncertainty in inferred hydraulic property values. 

Doherty (2015) and White et al. (2014) provide some strategies to minimise bias in parameter 
values by pre-processing observations and using multi-component objective functions. 

As indicated in section 10.5, it is essential that the measurement uncertainty for each observation 
is assessed, independent from the model. Moore and Doherty (2005) show that the predictive 
uncertainty depends greatly on the measurement uncertainty and what is considered an 
acceptable model to measurement misfit. In formal linear error propagation, the weights of 
observations in the objective function are inversely proportional to the measurement uncertainty, 
i.e. measurements with small uncertainty will have greater weight. Adjusting weights of 
observations is a straightforward way to combine different types of observations, to emphasize 
observations that align with the model outcomes of interest, reflect the reliability of observations 
and compensate for scale and structural issues. To avoid criticism that the weighting of 
observations is a deliberate attempt to pervert the model outcome, the weighting must be justified 
in a transparent way.  

One way of expressing this is by presenting the confidence interval that a weight corresponds to, 
assuming measurement error is normally distributed. A groundwater level measurement that is 
assigned a weight of 1 corresponds to a normal distribution with a mean equal to the observed 
value and a standard deviation of 1 m. If you consider model outcomes within two standard 
deviations as acceptable (approximately containing 90% of the probability mass), any model 
outcome within 2 m of the observed value is deemed acceptable. 

Note that giving all observations an equal weight is not recommended, as that implicitly assumes 
that the measurement and structural uncertainty is equal throughout the model domain, which is 
seldom an appropriate assumption. 

Many outcomes from groundwater models are non-linear functions of the model parameters. A 
naïve application of linear error propagation methods can thus lead to nonsensical results. 
Consider for instance that an analysis results in a drawdown prediction of 0.5 m with a standard 

deviation of 0.3 m. The 90th percentile prediction interval for a normal distribution, defined as [-

1.96, +1.96], then becomes [-0.088, 1.088]. This would imply that in this model the 
development can cause a rise in groundwater levels. 

The modelling team needs to verify and show that the model outcomes are sufficiently close to a 
linear function of the parameters for the linear error propagation to produce sensible results.  

A final comment on the deterministic approach with linear error propagation, is that it is not 
straight-forward to consider multiple conceptualisations as the method is based on a single, 
deterministic reference model.  

11.3 Stochastic Modelling with Bayesian Probability  

Stochastic modelling relaxes many of the assumptions on linearity and normality of parameters by 
evaluating a large number of parameter combinations and presenting the results, the model 
outcomes, as an ensemble.  

In Bayesian inference, a prior distribution is specified for each parameter (and eventual joint 
distribution between parameters), encapsulating the current state of information and knowledge. A 
sampling algorithm evaluates a large number of parameter combinations and preferably retains 
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parameter combinations with a high likelihood, i.e. a close fit to observations. The updated range 
of parameter values is called the posterior parameter distribution. This posterior parameter 
distribution is randomly sampled, and the corresponding model outcomes form the posterior 
predictive distribution. 

This stochastic approach of uncertainty quantification is the most generic and has the least 
stringent assumptions. There are nevertheless many challenges and pitfalls in implementing this 
approach. 

The largest drawback is the large number of model evaluations required. The advent of easily 
accessible supercomputer and cloud computing services means that evaluating a model several 
hundreds or thousands of times becomes feasible within the resources of a typical groundwater 
model project, even if a single model run requires more than an hour to converge. The largest 
bottleneck is not so much the run-time but ensuring the model is sufficiently stable that a large 
range of parameter combinations can be evaluated. Model emulation or surrogate models can 
partly alleviate the computational burden by replacing the original model with a low-resolution 
model or a statistical model (Asher et al. 2015). Adequately training such a model does, however, 
add another layer of uncertainty to the analysis, and it still requires hundreds to thousands of 
original model evaluations. 

The number of model evaluations required is problem-specific. The number of samples from a 
posterior parameter or predictive distribution is considered sufficient if the moments of interest 
converge. If one is interested in the 95th percentile of a distribution, one has to verify that this 
summary statistic does not change with increasing number of model runs. Measures of central 
tendency, such as the mean and median, tend to converge quicker than the extremes of a 
distribution, such as the 95th or 99th percentile. The number of model runs required therefore 
depends on the shape of the posterior distribution as well as on the summary statistics of interest. 

The stochastic approach allows specification of prior parameter distributions other than Gaussian, 
with, as an extreme, a fully empirical parameter distribution. The specification of these prior 
parameter distributions is the most appropriate way to incorporate existing knowledge into the 
uncertainty quantification. If the observation data is very informative (i.e. can constrain many of the 
parameters), specifying a too-narrow prior parameter distribution may result in not fully sampling 
parameter space and not including parameter combinations that provide equal or better fits to the 
data. Conversely, specifying too wide a prior distribution will make the sampling algorithm very 
inefficient and will greatly increase the number of model evaluations required to find parameter 
combinations that fit the data. 

Should the data not be very informative (i.e. the data cannot constrain the parameters relevant to 
the model outcomes of interest), the posterior parameter distributions will be nearly identical to the 
prior distributions. As with deterministic modelling with linear error propagation, it is essential to 
identify which parameters can be constrained by the available observations. 

Observations are introduced in the stochastic approach through the likelihood function. It can be 
shown that if measurement errors are assumed to be normally distributed, this is identical to linear 
error propagation. The discussion of weighting observations in previous sections is also, if not 
more, applicable to the stochastic approach. The modeller needs to specify the error model of the 
observations, independently of the model and to define what is an acceptable level of model to 
measurement misfit. 

Null-space Monte Carlo is a special case of a stochastic approach in which the posterior 
parameter distribution is not generated through sampling from prior parameter distributions, but in 
which the posterior parameter space is defined by the null-space. The null-space is formed by 
linear combinations of parameters that have no impact on the model objective function. Random 
sampling of the null-space ensures that all the model runs in the ensemble of model runs have a 
similar model-to-measurement misfit. This is a very efficient sampling algorithm, but still relies on 
parameter values that can be described through multivariate normal distributions and the definition 
of the null-space hinges on a linearization of a single model run through singular value 
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decomposition.  

Approximate Bayesian Computation relaxes the need to have a closed-form, analytic expression 
of the likelihood function. This method, like the Generalized Likelihood Uncertainty Estimation 
(GLUE) technique, allows the modeller to specify how the likelihood is calculated. This can, for 
instance, be a set of constraints that need to be satisfied simultaneously (e.g. head residuals less 
than 2 m, flux residuals less than 1 ML/d and aquitard Kh less than aquifer Kh). This method 
allows much more flexibility in specifying the likelihood and is transparent and straightforward to 
communicate. It does again put the onus on the modeller to select and justify the likelihood 
functions. 

The stochastic approach is more amenable to accommodating multiple conceptualisations. In 
Bayesian Model Averaging, each conceptualisation is assigned a prior probability and included in 
the sampling. 

11.4 Qualitative Uncertainty Analysis (Assumption Hunting) 

As indicated in section 6, each model, regardless of complexity or severity of potential impacts, 
needs to be subjected to a qualitative uncertainty analysis in terms of a systematic and rigorous 
assessment of the model assumptions and choices. The justification of model choices is standard 
practice in groundwater model reporting and the AGMG (Barnett et al. 2012) recommends a 
‘limitations and opportunities’ section to highlight the main limitations that can influence results. 
From the previous section it is clear that each uncertainty quantification approach is based on a 
number of assumptions that need to be justified and checked.  

In the Bioregional Assessments, this qualitative uncertainty analysis is presented together with the 
results of the uncertainty quantification (Peeters et al. 2016). Each assumption is scored on 
whether the assumption or model choice is driven by data availability, time and budget available 
for the project or technical challenges. The most important score, however, is the perceived effect 
of the assumption on the model outcomes. Summarising this discussion with the scoring system 
through a table allows reviewers and stakeholders to quickly assess the importance of the various 
model assumptions. 

The qualitative uncertainty analysis has great potential as a communication tool to engage 
stakeholders. It provides modellers and proponents an opportunity to transparently record that the 
effects of various assumptions have been logically considered in the modelling process. It also 
establishes a common ground between modellers and independent reviewers, in which reviewers 
need to precisely articulate why they disagree with the scoring and reasoning presented. 

There are various ways to justify assumptions. For many issues in simulating coal development, 
there is academic and technical literature available that explores effects on simulation. Relevant 
examples are Brunner et al. (2010) on representing surface water groundwater connectivity in 
MODFLOW, Herckenrath et al. (2015) and Cth (2014a) on simulating dual phase flow for coal 
seam gas production, Cook et al. (2016) on propagation of depressurisation through aquitards and 
Doble et al. (2017) on the effect of leaky bores. The latter two also explore the effects of 
assumptions from first principles, starting from the fundamental groundwater flow equations. 

Another approach to test assumptions, especially to those very specific to the model study, is to 
carry out numerical experiments with a small-scale model. Crosbie et al. (2016) analyse the effect 
of aquifer heterogeneity on regional drawdown simulations. Hayes and Nicol (2017) report building 
a simplified large-scale model to justify selection of boundary conditions, while Mackie (2013) 
explores the effect of aquitard heterogeneity through detailed small-scale stochastic analysis. 

The most objective approach to assess the effect of an assumption is to incorporate the 
assumption in the parameterisation so that it can be tested through a formal, comprehensive 
sensitivity analysis, which is discussed in the next section. 
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11.5 Sensitivity Analysis 

Saltelli (2002) defines sensitivity analysis as: “The study of how uncertainty in the output of a 
model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model 
input.” 

In this definition, sensitivity analysis augments uncertainty quantification as it identifies which 
sources of uncertainty contribute most to predictive uncertainty. This is the first step in designing 
strategies to reduce predictive uncertainty by gathering new data or additional modelling. 

There is, however, an important role for sensitivity analysis as a first step in an uncertainty 
quantification. The computational load of uncertainty quantification increases dramatically with 
increasing number of parameters. Factor screening or prioritisation aims to identify which 
parameters have the largest effect on model outcomes so that parameters with no or negligible 
effect can be excluded from the uncertainty quantification. 

Closely related to this goal is parameter identifiability; only parameters to which the objective 
function is sensitive can be constrained by the observations. Hill and Tiedeman (2007) and 
Doherty and Hunt (2009) provide metrics for parameter identifiability from analysis of a Jacobian 
matrix, created through systematic, one-at-a-time perturbation of a single parameter set. 

For example, a high value for the relative composite sensitivity (RCS) factor calculated via PEST 
from the Jacobian matrix for a parameter indicates that the model calibration is sensitive to that 
parameter, but that the measurements have provided enough information to adequately constrain 
the uncertainty. A low RCS value, however, indicates that the model calibration is not sensitive to 
the parameter because the measurements do not inform/constrain the calibration, and thus the 
effect on predictive uncertainty should be evaluated. Note that a numerical criterion is not 
applicable to this guidance, as the RCS is a relative factor, and thus the assessment of high and 
low is relative to the RCS factors calculated for a model. 

While this is a good starting point for a comprehensive sensitivity analysis, Saltelli and Annoni 
(2010) show that this can lead to misleading results, especially when the model is non-linear and 
highly parameterised. Pianosi et al. (2016) provide a comprehensive overview of global sensitivity 
analysis methods and their application in environmental modelling. In the Bioregional 
Assessments (Peeters et al. 2016), the density-based approach by Plischke et al. (2013) is 
applied to all groundwater and surface water models. The advantages of this approach are that it 
makes no assumption on the shape of the correlation between parameters and simulations and it 
can be applied to any given ensemble of model runs, i.e. there is no specified sampling algorithm 
required. 

These complex issues should be considered in any sensitivity analysis that supports uncertainty 
analysis, and the implications of the various assumptions and methods applied should be logically 
and transparently reported. 

12 ENGAGEMENT AND COMMUNICATION 

Effective communication requires engagement throughout the investigation, not simply at the end 
to present the results (Richardson et al. 2017; Barnett et al. 2012). 

The key to successful engagement and communication is to design and undertake the 
investigation methodology and present the results and related information about uncertainty in a 
way that will allow decision makers to understand the effects of uncertainty on project objectives 
(Richardson et al. 2017, cited in NCGRT, 2017); that is: 

1. based on agreed and transparent model objectives; 

2. tailored to decision-makers’ needs;  

3. focused on the messages that are relevant to their decisions; 

4. presented in plain and clear (precise, jargon-free) language, made fully transparent for 
independent scrutiny, and not prone to misinterpretation. 
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12.1 Engagement 

Engagement with regulatory agencies is required at the workflow outset and at subsequent key 
stages, to discuss and agree the methodologies and understand the implications of the results. 
Key points for engagement are indicated in the workflow (Table 1; see section 6). 

This requires meaningful two-way dialogue between modellers and decision-makers (representing 
key stakeholder organisations; the proponent and the regulatory agencies). Such discussions can 
occur on a ‘without prejudice basis’. Communicating end-products to decision-makers is the last 
step in what should be multiple communication steps beforehand. 

Transparency about the modelling objectives is critical, and needs to be discussed early in the 
project workflow. This may require agreement to develop more than one model in order to address 
what are quite different objectives, such as mine dewatering options (where data is often 
adequate) and/or impact assessment at sensitive receptors where data may be sparse. Using one 
model to address all issues has often delivered sub-optimal results in the past. However, recent 
advances in software (unstructured grids) and hardware (networked processors) mean that a well-
designed one-model approach may be deemed adequate provided it considers causal pathways 
and evaluates the effects of uncertainties. 

Effective communication of uncertainty requires an understanding of the role of decision makers 
and their needs, and of how they interact with other parties informing and responding to the 
decision-making process. Richardson et al. (2017) identify five main actors in the water resource 
management process: the water manager (regulator), the modeller (technician), the reviewer 
(independent), the stakeholders/public and the project proponent. The water manager as the 
primary decision maker in licensing mining projects should interact with all parties, including the 
public (e.g. landholders), and so will require the modeller to generate outputs that can be 
understood by all stakeholder groups. 

Together, the model impact assessment results and uncertainty analysis should be used by 
decision makers as a guide to the likelihood of consequences eventuating (be they beneficial or 
adverse) and to the assessment (by all parties) of attractive and effective management 
actions/options. Positive or negative framing can be used in the decision support context, meaning 
that expressions should take advantage of this priming (i.e. the direction and expression are 
consistent) to reduce cognitive stress for all parties. 

2D and 3D visualisation of conceptual models and other data can be helpful in explaining complex 
scientific processes and communicating concepts and simulation results. The AGMG (Barnett et 
al. 2012) present comprehensive guidance on reporting and visualisation issues. 

12.2 Calibrated Language 

Consistency and precision in language is required to help avoid subjective decision-making biases 
by the water manager or the project proponent. It is critical for all parties to not distort the 
implications of the findings presented in the assessment, and for the modeller to present the 
methods and results in a way that is not prone to misinterpretation. 

For any decision-maker it is important to have a clear description of the confidence in the model’s 
ability to provide accurate simulations along with a quantified level of uncertainty. 

Confidence in this sense is an estimate of the quality of evidence and agreement among 
information sources about a given simulation or assessment (Cth, 2015b). This should be 
discussed at the problem definition stage and throughout the workflow to avoid the potential for the 
final results to be questioned due to non-alignment of views, and to help prioritise data acquisition 
to reduce measurement and conceptual uncertainties.  

The IPCC (2013) devised a set of narrative descriptors on the likelihood of future climate 
outcomes that relate directly to probability classes that reflect uncertainty. Those principles have 
been combined with risk-based visualisation methods to develop an approach (Table 2) that 
enhances communication effectiveness for all parties (Richardson et al. 2017), comprising: 
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 the narrative descriptors of likelihood of a given outcome, coupled with 

 quantitative ranges in probabilities from an uncertainty analysis, coupled with  

 qualitative visual methods (risk-assessment style colour-coding).  

Richardson et al. (2017) provide other examples of the use of calibrated language to rank 
confidence in uncertainty analysis. For example, combinations of agreement and evidence are 
given, with ‘agreement’ being a qualitative term that should be developed by a technical reference 
group for a project. 

Table 2 - combined numeric, narrative and visual approach to describing likelihood 

 

13 CASE STUDY – MINING AREA C SOUTHERN FLANK VALLEY 

The Mining Area C (MAC) set of iron ore deposits (North and South Flank) is being developed by 
BHP Billiton in the Pilbara region of Western Australia. The methodology applied to the 2017 MAC 
assessment involved developing multiple conceptual and numerical groundwater models 
representing different hydrogeological and eco-hydrological conceptualisations. A comprehensive 
uncertainty analysis was applied to predict the range of impacts and to mitigate and manage 
potential impacts on water-related receptors (BHPB, 2017a, b).  

The BHP Billiton Water Resource Management Strategy (WRMS) is designed to mitigate and/or 
minimise operational impacts on surface water and groundwater as part of ‘business as usual’ 
activities. The strategy is consistent with the Western Australian Water in Mining Guideline (DoW, 
2013), which encourages a consultative and cooperative relationship between regulator and 
proponents, and facilitation of early identification of water management issues to clearly outline 
information requirements for assessment (as does this Explanatory Note).  

The BHPB WRMS applies a risk-based approach that considers scientific uncertainty, along with 
early warning triggers and thresholds of hydrological change processes and ecosystem 
responses. In the early stages of the process, these triggers and thresholds are typically 
conservative and precautionary reflecting incomplete scientific knowledge. As scientific 
understanding improves, the level of uncertainty reduces, and management triggers and 
thresholds are iteratively refined.  

Two alternate groundwater models were developed, each based on materially different 
hydrogeological conceptualisations: one conservative with respect to the ease of drawdown 
propagation towards key ecological assets and the other less so. The models utilised different 
parameter combinations but were calibrated to the same key observations of groundwater levels, 
flows at Weeli Wolli Spring and the catchment water balance. 

To address uncertainty, multiple model scenarios were devised with the two alternate groundwater 
models, representing parameter variability and the (uncertain) potential hydraulic connections 
within and between the regional and orebody aquifers. The initial model set comprised 2000 
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variants, of these 192 calibrated with justified confidence to be used in the assessment. The 
resulting outputs were presented as a range of drawdown responses due to a range of dewatering 
volumes from proposed operations at South Flank, as well as cumulative response from other 
operations.  

The assessment recognised the temporal and spatial variance in water balances (Figure 6) and 
cumulative effects from other mining activities in the area, with consideration of a mid and high 
case mine production schedule and options for mine closure strategies. The backfilling of pit voids 
to above the recovered standing water level (nominally 5 m above the groundwater level) was 
proposed as part of the mine closure strategy and thus was not considered to be a water-affecting 
activity in terms of quantity or quality.  

The predicted drawdown due to dewatering activities in the catchment was presented in terms of a 
range between the 20th and 80th percentile (P20 to P80) results. In this case, low percentiles 
represent a smaller drawdown footprint and dewatering requirement while the high percentiles 
represent a larger drawdown footprint and dewatering requirement. The range was not intended to 
represent confidence intervals but rather that the most likely prediction lies somewhere within the 
P20 to P80 range at most locations within the catchment.  

 

Figure 6 - combined Mining Area C water balance showing annual dewatering estimates 
compared with water demand, and the uncertainty range (BHP Billiton, 2017a) 

14 FATAL FLAWS CHECKLIST 

The fatal flaws checklist (Error! Reference source not found.) comprises nine sets of questions 
n essential aspects that any groundwater model uncertainty analysis needs to satisfy. The first two 
items can be viewed as a generic compliance checklist on whether uncertainty has been 
considered adequately (for the given risk context), and so they do not require a specific technical 
skill set to consider. The last seven items comprise more technical issues that require a degree of 
specialist hydrogeology and modelling skill to consider. 

The checklist should be considered in addition to the general guidance provided in the main body 
of the Explanatory Note and the IESC Information Guidelines (including the checklist in the 
Information Guidelines), as well as best practice requirements (notably Table 9-1 of Barnett et al. 
2012), and the IESC recommendations on modelling methods (Commonwealth of Australia, 2014, 
2015).  
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While the criteria are presented in a checklist format, the answers must be provided with cross-
references to where the objective evidence is provided to address the issue (i.e. to identify specific 
parts or sub-sections of the EIS, not simply to a chapter/section).



 

 

 

Table 3 - Fatal Flaws Review Checklist for Uncertainty Assessment 

 ■ Is there evidence of engagement (‘without prejudice’) between the project proponent and 
regulatory agencies, invoked from the project outset and at subsequent key stages: 

 to discuss and agree the project objectives and the modelling objectives? 

 to discuss and agree the uncertainty analysis methodologies, including the nature and 
scope of the (minimum requirement) qualitative uncertainty analysis, and the quantitative 
uncertainty analysis for high risk projects (i.e. most large coal mines and CSG projects)? 

 to review the reporting on the modelling and uncertainty analyses, which must be 
presented in a manner that is open, transparent and amenable for scrutiny (and not 
prone to misinterpretation), and must include agreed justifications for invoking 
assumptions/criteria applied to implement the methodology? 

 to understand the implications of the results in terms of environmental decision-making? 

 to identify whether an independent technical review of the modelling and/or the 
uncertainty analysis is warranted? 

■ Is the modelling and uncertainty analysis methodology designed to provide information for 
decision makers on the effects of uncertainty on the project objectives (echoing the 
definition of risk in ISO31000:2009), and on the effects of potential bias?  
Is the adopted complexity-simplicity balance commensurate with the overall risk context 
and the model purpose of investigating the uncertainty/risk issues (i.e. based on the 
evidence available of engagement identified in item 1)? 

■ Has the uncertainty assessment and modelling methodology been designed and 
implemented using all the available data, with detailed consideration of the hydrological 
stressors arising from the development and from natural stressors including climate 
variability, and with unbiased consideration of water-related asset values and causal 
pathways for potential impacts (direct, indirect and cumulative)? 

■ Where history-match conditional calibration is undertaken, has it minimised non-uniqueness 
and error variance and if not, is a reasoned justification provided? (AGMG recommends 
fitting model outputs to measured data on heads and discharges for a wide range of 
climate and hydrological stressor conditions, using Pilot Points and regularisation)?  
Is an acceptable level of model-to-measurement mismatch defined for the conditional 
calibration? 

■ Are all simulations consistent with all relevant information/data and if not, is a reasoned 
justification provided? (AGMG recommends restricting predictions to the same types and 
magnitudes of variables used for conditional calibration (e.g. heads and fluxes) and to 
similar hydrological stressor regimes and timeframes)  

■ Has the model been submitted to stress testing in which a number of extreme parameter 
combinations (representative of a computationally-intensive automated conditional 
calibration or stochastic model evaluation) are tested for model convergence? 

■ Has a parameter sensitivity analysis and/or a parameter identifiability analysis been 
completed to identify which parameters can be constrained by the available observations 
and which parameters affect the simulations the most, and are the implications discussed? 
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■ Have all reports been prepared in an open, honest and transparent way that is: 

 amenable for independent scrutiny and not prone to misinterpretation; 

 based on agreed and transparent model objectives; 

 tailored to decision-makers’ needs (focus on messages relevant to their decisions); 

 presented in plain and clear language (precise, jargon-free, calibrated) and in conjunction 
with graphics in a manner that reduces cognitive strain. 

■ Do the hydrogeology and modelling reports present a transparent and logical discussion of 
the following?  

 project objectives and the model objectives and uncertainty analysis methodologies 

 how the modelling objectives are defined in specific and measurable terms in space and 
time (e.g. threshold impacts of drawdown at a GDE of more than 2m in X years); 

 hydrogeological conceptualisations and parameterisations; 

 parameters to include in uncertainty quantification and related probability distributions; 

 measurement uncertainty of each observation or model to measurement misfit criteria;  

 agreed justifications for invoking model/method assumptions/criteria and how those 
choices affect simulations and uncertainties;  

 methods, simulations and results discussed using calibrated language and presented in a 
way that reduces cognitive strain and is not prone to misinterpretation. 
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